Slow Blade Systems

Slow Blade Systems is a one-man indie game development studio. Its debut project is a physics-based building and simulation game called "Aloft - Airship Pioneers" which is focused on the era of airship travel.

Aloft Dev Log 0, Introduction

Probably best to start with a little intro to what this is all about.

I've been working in the games industry the last few years (my day job is at Goldhawk Interactive, our first game being Xenonauts) and mainly on the art/design side of things. I decided I also wanted to develop at least some rudimentary programming skills, so I've been playing with GameMaker on and off for the last year to do just that. Up to now I've mainly been messing about with little throw away projects to get to grips with GM's built-in language (I made a little functional real-time multiplayer system, for example) but now I've started working on a game I eventually would like to release.

The game, which I am thinking about calling "Aloft - Airship Pioneers", will be set in the early 20th century and have the player building and flying airships. I decided to go with airships because they have always been fascinating to me, but there are almost no games that deal with them in any depth - and when they do show up, it is only as a bit of steampunk window dressing. When people play my game I want them to gain a little bit of understanding of how airships worked and flew, and the best way to do that (as demonstrated by games like Bridge Builder and Kerbal Space Program) is to let them try it themselves. For the airship aficionados amongst you I plan to have both rigid and non-rigid types in the game, though starting with small non-rigids like the Submarine Scout class.

For the sake of simplicity the airship building/flight will be presented in a side-on 2D view, but will contain a robust physical simulation of airship flight physics and dynamics; going 2D combined with a physics simulation might sound like an odd approach, but I've prototyped it and found it to work well. The coolest feature of the physics will be a gas simulation system I designed myself - this means the body of the airship will be simulated as an actual dynamic structure whose buoyancy and shape is dictated by the gas inside it, using the ideal gas law; the system is based on a fluid dynamics finite element analysis approach, which I am familiar with from a previous job I had at an engineering company.

I will break down how that system works at a later date as I think it is quite interesting, but for now here is a gif of me manipulating a gas filled bag that is being simulated using this approach in one of my test applications. Each yellow square is one element in the gas simulation grid, with the intensity of the yellow indicating the density/pressure of the gas within; the red links around the edges are the balloon's skin, each node of which is dynamically linked to the gas sim system; the pink ball is the indomitable force of progress.

Hopefully people will find the posts about this interesting, and I'll do more as progress continues. You can follow them here via RSS or sign-up for our mailing list; my hope is to be able to use the mailing list as a resource to recruit people from to help with testing, when it gets to that stage, so if you are interested in that please sign-up via the link at the top of the page or by clicking here. I am also available to follow on Twitter, where I may post additional bits of info or semi-frequent nonsense.